
Implementing HATEOAS in
Jakarta REST: A Comprehensive
Developer's Guide

Power Up Your Jakarta EE User Guide

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

Guide Updated: October 2024Contents

Introduction 1

Key HATEOSAS Concepts 1

The Link Class and LinkBuilder 2

Link Class 2

LinkBuilder 2

Implementing HATEOAS in Jakarta REST 2

Basic JAX-RS Resource 3

Adding HATEOAS Support 4

Key Changes for HATEOAS Support 6

Example JSON Response 7

Benefits of HATEOAS 8

Implementation Considerations 8

Conclusions 9

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

1

Introduction

HATEOAS, short for Hypermedia as the Engine of Application State, is a key concept in the design of
RESTful APIs. It enables API clients to dynamically interact with a service by discovering available
actions and resources through hypermedia links embedded in the API's responses. This makes
the API more adaptable to changes and easier to evolve over time. This approach enhances the
self-descriptiveness of the API, making it more adaptable to changes and easier to evolve over time.

This guide is designed for Java and Jakarta EE developers who are familiar with RESTful API devel-
opment and Jakarta REST (formerly JAX-RS), and are looking to enhance their APIs by implementing
HATEOAS principles. By the end of this guide, you will be able to:

• Understand the core concepts of HATEOAS and its benefits in API design

• Refactor a basic JAX-RS resource into a HATEOAS-compliant endpoint

• Create and include hypermedia links in API responses

• Address common implementation considerations

Whether you're building a new API or improving an existing one, this guide will help you to create
more flexible, discoverable, futureproof and easy to evolve RESTful services.

Key HATEOSAS Concepts

Before diving into the implementation of HATEOAS in Jakarta REST, it’s essential to understand the
foundational principles that drive this approach

1. Hypermedia Links: These are URLs or URI templates embedded within the API's responses
(typically in JSON or XML format). They guide the client on how to interact with the API, indi-
cating available actions (e.g., 'create', 'update', 'delete') and the resources they operate on.

2. Self-Descriptiveness: A HATEOAS-compliant API provides enough information within its
responses to guide the client on possible next steps. The client doesn't need out-of-band
knowledge about the API's structure or available actions.

3. Dynamic Client Interaction: The client interacts with the API based on the hypermedia
links it receives, making it adaptable to changes in the API's structure or available actions.

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

2

The Link Class and LinkBuilder

Before we look at implementing HATEOAS, it's important to understand two key classes that are
core to a HATEOAS implementation in Jakarta REST: the Link class and its associatedLinkBuilder.

Link Class
The Link class represents a hypermedia link that can be included in API responses. It comprises
the following properties:

1. URI: The target URI of the link.

2. Relation Type (rel): Describes the relationship between the current resource and the linked
resource (e.g., "self", "next", "previous").

3. Media Type: Indicates the expected media type of the linked resource.

4. Title: An optional title for the link.

LinkBuilder
LinkBuilder is a builder class for the creation of Link objects. It provides a fluent API for con-
structing links with various properties. Some of its methods include:

1. Link.Builder fromUri(URI uri): Creates a builder for a link with the given URI.

2. Link.Builder rel(String rel): Sets the relation type of the link.

3. Link.Builder type(String type): Sets the media type of the linked resource.

4. Link.Builder title(String title): Sets the title of the link.

5. Link build(): Constructs the final Link object.

Implementing HATEOAS in Jakarta REST

While Jakarta REST (formerly JAX-RS) does not natively support HATEOAS, it provides all the nec-
essary constructs needed to implement HATEOAS in your APIs. Let's explore how to use these
constructs to create hypermedia services.

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

3

Basic JAX-RS Resource
We'll start with a basic JAX-RS resource for managing orders in an e-commerce system:

@Path("/orders")

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class OrderResource {

 @Inject

 private OrderService orderService;

 @GET

 @Path("/{id}")

 public Response getOrder(@PathParam("id") Long id) {

 Order order = orderService.findOrder(id);

 if (order == null) {

 return Response.status(Response.Status.NOT_FOUND).build();

 }

 return Response.ok(order).build();

 }

 @POST

 public Response createOrder(Order order) {

 Order createdOrder = orderService.createOrder(order);

 return Response.status(Response.Status.CREATED)

 .entity(createdOrder)

 .build();

 }

 @PUT

 @Path("/{id}")

 public Response updateOrder(@PathParam("id") Long id, Order order) {

 order.setId(id);

 Order updatedOrder = orderService.updateOrder(order);

 return Response.ok(updatedOrder).build();

 }

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

4

 @DELETE

 @Path("/{id}")

 public Response deleteOrder(@PathParam("id") Long id) {

 orderService.deleteOrder(id);

 return Response.noContent().build();

 }

}

This OrderResource class provides basic CRUD (Create, Read, Update, Delete) operations for
orders. However, it does not implement HATEOAS principles yet.

Adding HATEOAS Support
To add HATEOAS support, let’s create a wrapper record called OrderRepresentation for our
Order entity that includes hypermedia links:

public record OrderRepresentation(Order order, List<Link> links) {
 public OrderRepresentation(Order order) {
 this(order, new ArrayList<>());
 }

 public void addLink(Link link) {
 this.links.add(link);
 }
}

Now, let's update our OrderResource to use this new OrderRepresentation class and include
hypermedia links:

@Path("/orders")

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class OrderResource {

 @Inject

 private OrderService orderService;

 @Inject

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

5

 private UriInfo uriInfo;

 @GET

 @Path("/{id}")

 public Response getOrder(@PathParam("id") Long id) {

 Order order = orderService.findOrder(id);

 if (order == null) {

 return Response.status(Response.Status.NOT_FOUND).build();

 }

 OrderRepresentation orderRep = new OrderRepresentation(order);

 // Add self link

 Link selfLink = Link.fromUriBuilder(uriInfo.getAbsolutePathBuilder())

 .rel("self")

 .type(MediaType.APPLICATION_JSON)

 .build();

 orderRep.addLink(selfLink);

 // Add update link

 Link updateLink = Link.fromUriBuilder(uriInfo.getAbsolutePathBuilder().

path(“update”))

 .rel("update")

 .type(MediaType.APPLICATION_JSON)

 .build();

 orderRep.addLink(updateLink);

 // Add cancel link (assuming there's a cancel endpoint)

 Link cancelLink = Link.fromUriBuilder(uriInfo.getAbsolutePathBuilder().

path("cancel"))

 .rel("cancel")

 .type(MediaType.APPLICATION_JSON)

 .build();

 orderRep.addLink(cancelLink);

 return Response.ok(orderRep).build();

 }

 @POST

 public Response createOrder(Order order) {

 Order createdOrder = orderService.createOrder(order);

 OrderRepresentation orderRep = new OrderRepresentation(createdOrder);

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

6

 // Add self link for the newly created order

 URI location = uriInfo.getAbsolutePathBuilder().path(createdOrder.

getId().toString()).build();

 Link selfLink = Link.fromUri(location)

 .rel("self")

 .type(MediaType.APPLICATION_JSON)

 .build();

 orderRep.addLink(selfLink);

 return Response.status(Response.Status.CREATED)

 .entity(orderRep)

 .location(location)

 .build();

 }

 // Rest of CRUD methods would be similar to the create method above…

}

Key Changes for HATEOAS Support
1. OrderRepresentation Record: We use this wrapper Java record to include hypermedia

links along with the Order object.

2. UriInfo Usage: We inject the UriInfo interface to build URIs based on the current request
context. This ensures our links are always correct, even if the base URL of our API changes.

3. Adding Links: In the getOrder method, we add several links:

• A "self" link, pointing to the current resource

• An "update" link, also pointing to the current resource

• A "cancel" link, pointing to a hypothetical cancel endpoint

4. Creating Resources: In the createOrder method, we include a "self" link to the newly cre-
ated order in the response.

5. Link Class: We use the Link class from Jakarta REST to create our hypermedia links. Each
link includes a relation type ("rel") which describes its purpose, and a media type.

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

7

Example JSON Response
Here's an example of what the JSON response for a GET request to /orders/123 might look like:

{

 "order": {

 "id": 123,

 "customerName": "John Doe",

 "totalAmount": 99.99,

 "status": "PROCESSING"

 },

 "links": [

 {

 "rel": "self",

 "href": "<http://api.example.com/orders/123>",

 "type": "application/json"

 },

 {

 "rel": "update",

 "href": "<http://api.example.com/orders/123>",

 "type": "application/json"

 },

 {

 "rel": "cancel",

 "href": "<http://api.example.com/orders/123/cancel>",

 "type": "application/json"

 }

]

}

This response provides the order details along with links to related actions. A client can use these links
to navigate the API and perform actions without needing to know the exact URL structure in advance.

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

8

Benefits of HATEOAS
1. Improved Evolvability: You can modify your API's structure or add new features with-

out breaking existing clients. The clients discover new capabilities through the hyperme-
dia links.

2. Reduced Client-Side Logic: The client doesn't need to hardcode URIs or understand the
API's internal structure. It navigates the API based on the provided links.

3. Enhanced Discoverability: HATEOAS makes your API easy to explore, allowing clients (and
developers) to understand its capabilities by simply following the links.

4. Flexibility: The set of available actions can change based on the state of the resource or the
permissions of the user, and this is communicated dynamically through the provided links.

Implementation Considerations
1. Performance: Adding hypermedia links to your responses increases the payload size.

Consider the trade-off between the benefits of HATEOAS and the increased data transfer.

2. Versioning: HATEOAS can reduce the need for API versioning, as clients are guided by the
links provided rather than hard coded expectations about the API structure.

3. Documentation: While HATEOAS improves API discoverability, it doesn't eliminate the need
for good documentation. Ensure you document the meaning of different link relations and
any expected workflows.

4. Client Implementation: Clients need to be built to understand and use the hypermedia
controls. This may require more sophisticated client-side logic.

Implementing HATEOAS in Jakarta REST: A Comprehensive Developer's Guide

9

sales@payara.fish UK: +44 800 538 5490
Intl: +1 888 239 8941

www.payara.fish

  

Payara Services Ltd 2024 All Rights Reserved. Registered in England and Wales; Registration Number 09998946
Registered Office: Malvern Hills Science Park, Geraldine Road, Malvern, United Kingdom, WR14 3SZ

Conclusions
Implementing HATEOAS in your Jakarta REST APIs leads to more flexible, adaptable and user-friendly
APIs. Using hypermedia links and self-descriptiveness, you allow your clients to interact with your
API dynamically, resulting in a more resilient and future-proof integration.

While implementing HATEOAS requires more upfront work in designing and implementing the API,
it results in a more reliable and evolvable system in the long run. It's particularly useful for complex
systems where the set of possible actions might vary based on the state of the resource or the per-
missions of the user.

Through the brief principles and examples outlined in this guide, you can create RESTful APIs that are
not just functional, but also self-describing and discoverable, providing a superior experience for API
consumers and setting a strong foundation for the long-term evolution of your services. Download
Payara Enterprise trial today and start building your next API on our production supported Jakarta
EE runtime today! Happy Coding!

PAYARA SERVER

FREE TRIAL
PAYARA CLOUD

FREE TRIAL

Interested in Payara? Try Before You Buy

mailto:sales%40payara.fish?subject=
https://www.payara.fish
https://www.payara.fish/page/free-trials/
https://www.payara.fish/page/payara-enterprise-downloads/
https://manage.payara.cloud/

	Introduction
	Key HATEOSAS Concepts
	The Link Class and LinkBuilder
	Link Class
	LinkBuilder

	Implementing HATEOAS in Jakarta REST
	Basic JAX-RS Resource
	Adding HATEOAS Support
	Key Changes for HATEOAS Support
	Example JSON Response

	Benefits of HATEOAS
	Implementation Considerations
	Conclusions

